* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
153 lines
3.9 KiB
Markdown
153 lines
3.9 KiB
Markdown
---
|
|
id: 59880443fb36441083c6c20e
|
|
title: Euler method
|
|
challengeType: 5
|
|
forumTopicId: 302258
|
|
dashedName: euler-method
|
|
---
|
|
|
|
# --description--
|
|
|
|
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in [the wikipedia page](<https://en.wikipedia.org/wiki/Euler method> "wp: Euler method").
|
|
|
|
The ODE has to be provided in the following form:
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$\frac{dy(t)}{dt} = f(t,y(t))$</big></li>
|
|
</ul>
|
|
|
|
with an initial value
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$y(t_0) = y_0$</big></li>
|
|
</ul>
|
|
|
|
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$\frac{dy(t)}{dt} \approx \frac{y(t+h)-y(t)}{h}$</big></li>
|
|
</ul>
|
|
|
|
then solve for $y(t+h)$:
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$y(t+h) \approx y(t) + h \, \frac{dy(t)}{dt}$</big></li>
|
|
</ul>
|
|
|
|
which is the same as
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$y(t+h) \approx y(t) + h \, f(t,y(t))$</big></li>
|
|
</ul>
|
|
|
|
The iterative solution rule is then:
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$y_{n+1} = y_n + h \, f(t_n, y_n)$</big></li>
|
|
</ul>
|
|
|
|
where $h$ is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
|
|
|
|
**Example: Newton's Cooling Law**
|
|
|
|
Newton's cooling law describes how an object of initial temperature $T(t_0) = T_0$ cools down in an environment of temperature $T_R$:
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$\frac{dT(t)}{dt} = -k \, \Delta T$</big></li>
|
|
</ul>
|
|
|
|
or
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$\frac{dT(t)}{dt} = -k \, (T(t) - T_R)$</big></li>
|
|
</ul>
|
|
|
|
It says that the cooling rate $\\frac{dT(t)}{dt}$ of the object is proportional to the current temperature difference $\\Delta T = (T(t) - T_R)$ to the surrounding environment.
|
|
|
|
The analytical solution, which we will compare to the numerical approximation, is
|
|
|
|
<ul style='list-style: none;'>
|
|
<li><big>$T(t) = T_R + (T_0 - T_R) \; e^{-k t}$</big></li>
|
|
</ul>
|
|
|
|
# --instructions--
|
|
|
|
Implement a routine of Euler's method and then use it to solve the given example of Newton's cooling law for three different step sizes of:
|
|
|
|
<ul>
|
|
<li><code>2 s</code></li>
|
|
<li><code>5 s</code> and</li>
|
|
<li><code>10 s</code></li>
|
|
</ul>
|
|
|
|
and compare with the analytical solution.
|
|
|
|
**Initial values:**
|
|
|
|
<ul>
|
|
<li>initial temperature <big>$T_0$</big> shall be <code>100 °C</code></li>
|
|
<li>room temperature <big>$T_R$</big> shall be <code>20 °C</code></li>
|
|
<li>cooling constant <big>$k$</big> shall be <code>0.07</code></li>
|
|
<li>time interval to calculate shall be from <code>0 s</code> to <code>100 s</code></li>
|
|
</ul>
|
|
|
|
First parameter to the function is initial time, second parameter is initial temperature, third parameter is elapsed time and fourth parameter is step size.
|
|
|
|
# --hints--
|
|
|
|
`eulersMethod` should be a function.
|
|
|
|
```js
|
|
assert(typeof eulersMethod === 'function');
|
|
```
|
|
|
|
`eulersMethod(0, 100, 100, 2)` should return a number.
|
|
|
|
```js
|
|
assert(typeof eulersMethod(0, 100, 100, 2) === 'number');
|
|
```
|
|
|
|
`eulersMethod(0, 100, 100, 2)` should return 20.0424631833732.
|
|
|
|
```js
|
|
assert.equal(eulersMethod(0, 100, 100, 2), 20.0424631833732);
|
|
```
|
|
|
|
`eulersMethod(0, 100, 100, 5)` should return 20.01449963666907.
|
|
|
|
```js
|
|
assert.equal(eulersMethod(0, 100, 100, 5), 20.01449963666907);
|
|
```
|
|
|
|
`eulersMethod(0, 100, 100, 10)` should return 20.000472392.
|
|
|
|
```js
|
|
assert.equal(eulersMethod(0, 100, 100, 10), 20.000472392);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function eulersMethod(x1, y1, x2, h) {
|
|
|
|
}
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
function eulersMethod(x1, y1, x2, h) {
|
|
let x = x1;
|
|
let y = y1;
|
|
|
|
while ((x < x2 && x1 < x2) || (x > x2 && x1 > x2)) {
|
|
y += h * (-0.07 * (y - 20));
|
|
x += h;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
```
|