* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.9 KiB
1.9 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5a23c84252665b21eecc7e76 | Gamma function | 5 | 302271 | gamma-function |
--description--
Implement one algorithm (or more) to compute the Gamma (\\Gamma
) function (in the real field only).
The Gamma function can be defined as:
$\Gamma(x) = \displaystyle\int_0^\infty t^{x-1}e^{-t} dt$
--hints--
gamma
should be a function.
assert(typeof gamma == 'function');
gamma(.1)
should return a number.
assert(typeof gamma(0.1) == 'number');
gamma(.1)
should return 9.513507698668736
.
assert.equal(round(gamma(0.1)), round(9.513507698668736));
gamma(.2)
should return 4.590843711998803
.
assert.equal(round(gamma(0.2)), round(4.590843711998803));
gamma(.3)
should return 2.9915689876875904
.
assert.equal(round(gamma(0.3)), round(2.9915689876875904));
gamma(.4)
should return 2.218159543757687
.
assert.equal(round(gamma(0.4)), round(2.218159543757687));
gamma(.5)
should return 1.7724538509055159
.
assert.equal(round(gamma(0.5)), round(1.7724538509055159));
--seed--
--after-user-code--
function round(x) {
return Number(x).toPrecision(13);
}
--seed-contents--
function gamma(x) {
}
--solutions--
function gamma(x) {
var p = [0.99999999999980993, 676.5203681218851, -1259.1392167224028,
771.32342877765313, -176.61502916214059, 12.507343278686905,
-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7
];
var g = 7;
if (x < 0.5) {
return Math.PI / (Math.sin(Math.PI * x) * gamma(1 - x));
}
x -= 1;
var a = p[0];
var t = x + g + 0.5;
for (var i = 1; i < p.length; i++) {
a += p[i] / (x + i);
}
var result=Math.sqrt(2 * Math.PI) * Math.pow(t, x + 0.5) * Math.exp(-t) * a;
return result;
}