* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
93 lines
2.0 KiB
Markdown
93 lines
2.0 KiB
Markdown
---
|
|
id: 59637c4d89f6786115efd814
|
|
title: Hofstadter Q sequence
|
|
challengeType: 5
|
|
forumTopicId: 302287
|
|
dashedName: hofstadter-q-sequence
|
|
---
|
|
|
|
# --description--
|
|
|
|
The [Hofstadter Q sequence](https://en.wikipedia.org/wiki/Hofstadter_sequence#Hofstadter_Q_sequence "wp: Hofstadter_sequence#Hofstadter_Q_sequence") is defined as:
|
|
|
|
$Q(1)=Q(2)=1, \\\\ Q(n)=Q\\big(n-Q(n-1)\\big)+Q\\big(n-Q(n-2)), \\quad n>2.$
|
|
|
|
It is defined like the [Fibonacci sequence](<https://rosettacode.org/wiki/Fibonacci sequence> "Fibonacci sequence"), but whereas the next term in the Fibonacci sequence is the sum of the previous two terms, in the Q sequence the previous two terms tell you how far to go back in the Q sequence to find the two numbers to sum to make the next term of the sequence.
|
|
|
|
# --instructions--
|
|
|
|
Implement the Hofstadter Q Sequence equation as a function. The function should accept number, `n`, and return an integer.
|
|
|
|
# --hints--
|
|
|
|
`hofstadterQ` should be a function.
|
|
|
|
```js
|
|
assert(typeof hofstadterQ === 'function');
|
|
```
|
|
|
|
`hofstadterQ()` should return `integer`
|
|
|
|
```js
|
|
assert(Number.isInteger(hofstadterQ(1000)));
|
|
```
|
|
|
|
`hofstadterQ(1000)` should return `502`
|
|
|
|
```js
|
|
assert.equal(hofstadterQ(testCase[0]), res[0]);
|
|
```
|
|
|
|
`hofstadterQ(1500)` should return `755`
|
|
|
|
```js
|
|
assert.equal(hofstadterQ(testCase[1]), res[1]);
|
|
```
|
|
|
|
`hofstadterQ(2000)` should return `1005`
|
|
|
|
```js
|
|
assert.equal(hofstadterQ(testCase[2]), res[2]);
|
|
```
|
|
|
|
`hofstadterQ(2500)` should return `1261`
|
|
|
|
```js
|
|
assert.equal(hofstadterQ(testCase[3]), res[3]);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --after-user-code--
|
|
|
|
```js
|
|
const testCase = [1000, 1500, 2000, 2500];
|
|
const res = [502, 755, 1005, 1261];
|
|
```
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function hofstadterQ(n) {
|
|
|
|
return n;
|
|
}
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
function hofstadterQ (n) {
|
|
const memo = [1, 1, 1];
|
|
const Q = function (i) {
|
|
let result = memo[i];
|
|
if (typeof result !== 'number') {
|
|
result = Q(i - Q(i - 1)) + Q(i - Q(i - 2));
|
|
memo[i] = result;
|
|
}
|
|
return result;
|
|
};
|
|
return Q(n);
|
|
}
|
|
```
|