freeCodeCamp/curriculum/challenges/english/11-machine-learning-with-python/tensorflow/natural-language-processing-with-rnns-building-the-model.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

63 lines
1.0 KiB
Markdown

---
id: 5e8f2f13c4cdbe86b5c72da1
title: 'Natural Language Processing With RNNs: Building the Model'
challengeType: 11
videoId: 32WBFS7lfsw
dashedName: natural-language-processing-with-rnns-building-the-model
---
# --question--
## --text--
Fill in the blanks below to complete the `build_model` function:
```py
def build_mode(vocab_size, embedding_dim, rnn_units, batch_size):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size,
embedding_dim,
batch_input_shape=[batch_size, None]),
tf.keras.layers.__A__(rnn_units,
return_sequences=__B__,
recurrent_initializer='glorot_uniform),
tf.keras.layers.Dense(__C__)
])
__D__
```
## --answers--
A: `ELU`
B: `True`
C: `vocab_size`
D: `return model`
---
A: `LSTM`
B: `False`
C: `batch_size`
D: `return model`
---
A: `LSTM`
B: `True`
C: `vocab_size`
D: `return model`
## --video-solution--
3