Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-305-reflexive-position.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

47 lines
886 B
Markdown

---
id: 5900f49d1000cf542c50ffb0
title: 'Problem 305: Reflexive Position'
challengeType: 5
forumTopicId: 301959
dashedName: problem-305-reflexive-position
---
# --description--
Let's call S the (infinite) string that is made by concatenating the consecutive positive integers (starting from 1) written down in base 10.
Thus, S = 1234567891011121314151617181920212223242...
It's easy to see that any number will show up an infinite number of times in S.
Let's call f(n) the starting position of the nth occurrence of n in S. For example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365.
Find ∑f(3k) for 1≤k≤13.
# --hints--
`euler305()` should return 18174995535140.
```js
assert.strictEqual(euler305(), 18174995535140);
```
# --seed--
## --seed-contents--
```js
function euler305() {
return true;
}
euler305();
```
# --solutions--
```js
// solution required
```