84 lines
1.5 KiB
Markdown
84 lines
1.5 KiB
Markdown
---
|
||
id: 5900f4ab1000cf542c50ffbd
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
title: 问题318:2011个九
|
||
---
|
||
|
||
## Description
|
||
<section id="description">
|
||
考虑实数√2+√3。
|
||
当我们计算√2+√3的偶数幂时
|
||
我们得到:
|
||
(√2+√3)2 = 9.898979485566356 ...
|
||
(√2+√3)4 = 97.98979485566356 ...
|
||
(√2+√3)6 = 969.998969071069263 ...
|
||
(√2+√3)8 = 9601.99989585502907 ...
|
||
(√2+√3)10 = 95049.999989479221 ...
|
||
(√2+√3)12 = 940897.9999989371855 ...
|
||
(√2+√3)14 = 9313929.99999989263 ...
|
||
(√2+√3)16 = 92198401.99999998915 ...
|
||
|
||
这些幂的小数部分开头的连续九个数字似乎没有减少。
|
||
实际上,可以证明(√2+√3)2n的小数部分对于大n接近1。
|
||
|
||
|
||
考虑形式为√p+√q的所有实数,其中p和q为正整数,且p <q,使得小数部分
|
||
(√p+√q)的2n对于大n接近1。
|
||
|
||
|
||
令C(p,q,n)为(√p+√q)2n的小数部分开头的连续九个数字。
|
||
|
||
|
||
令N(p,q)为n的最小值,以使C(p,q,n)≥2011。
|
||
|
||
|
||
求p + q≤2011的∑N(p,q)。
|
||
</section>
|
||
|
||
## Instructions
|
||
<section id="instructions">
|
||
</section>
|
||
|
||
## Tests
|
||
<section id='tests'>
|
||
|
||
```yml
|
||
tests:
|
||
- text: <code>euler318()</code>应该返回709313889。
|
||
testString: assert.strictEqual(euler318(), 709313889);
|
||
|
||
```
|
||
|
||
</section>
|
||
|
||
## Challenge Seed
|
||
<section id='challengeSeed'>
|
||
|
||
<div id='js-seed'>
|
||
|
||
```js
|
||
function euler318() {
|
||
// Good luck!
|
||
return true;
|
||
}
|
||
|
||
euler318();
|
||
|
||
```
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</section>
|
||
|
||
## Solution
|
||
<section id='solution'>
|
||
|
||
```js
|
||
// solution required
|
||
```
|
||
|
||
/section>
|