66 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f4201000cf542c50ff33
 | 
						||
challengeType: 5
 | 
						||
title: 'Problem 180: Rational zeros of a function of three variables'
 | 
						||
forumTopicId: 301816
 | 
						||
---
 | 
						||
 | 
						||
## Description
 | 
						||
<section id='description'>
 | 
						||
For any integer n, consider the three functions
 | 
						||
f1,n(x,y,z) = xn+1 + yn+1 − zn+1f2,n(x,y,z) = (xy + yz + zx)*(xn-1 + yn-1 − zn-1)f3,n(x,y,z) = xyz*(xn-2 + yn-2 − zn-2)
 | 
						||
and their combination
 | 
						||
fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) − f3,n(x,y,z)
 | 
						||
We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers of the form a / b with
 | 
						||
0 < a < b ≤ k and there is (at least) one integer n, so that fn(x,y,z) = 0.
 | 
						||
Let s(x,y,z) = x + y + z.
 | 
						||
Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples (x,y,z) of order 35. All the s(x,y,z) and t  must be in reduced form.
 | 
						||
Find u + v.
 | 
						||
</section>
 | 
						||
 | 
						||
## Instructions
 | 
						||
<section id='instructions'>
 | 
						||
 | 
						||
</section>
 | 
						||
 | 
						||
## Tests
 | 
						||
<section id='tests'>
 | 
						||
 | 
						||
```yml
 | 
						||
tests:
 | 
						||
  - text: <code>euler180()</code> should return 285196020571078980.
 | 
						||
    testString: assert.strictEqual(euler180(), 285196020571078980);
 | 
						||
 | 
						||
```
 | 
						||
 | 
						||
</section>
 | 
						||
 | 
						||
## Challenge Seed
 | 
						||
<section id='challengeSeed'>
 | 
						||
 | 
						||
<div id='js-seed'>
 | 
						||
 | 
						||
```js
 | 
						||
function euler180() {
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
euler180();
 | 
						||
```
 | 
						||
 | 
						||
</div>
 | 
						||
 | 
						||
 | 
						||
 | 
						||
</section>
 | 
						||
 | 
						||
## Solution
 | 
						||
<section id='solution'>
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 | 
						||
 | 
						||
</section>
 |