* fix: clean-up Project Euler 181-200 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing delimiter Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			47 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 5900f42f1000cf542c50ff40
 | 
						|
title: 'Problem 194: Coloured Configurations'
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 301832
 | 
						|
dashedName: problem-194-coloured-configurations
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
Consider graphs built with the units A:
 | 
						|
<img class="img-responsive" alt="graph unit A" src="https://cdn.freecodecamp.org/curriculum/project-euler/coloured-configurations-1.png" style="display: inline-block; background-color: white; padding: 10px;">
 | 
						|
 and B: <img class="img-responsive" alt="graph unit B" src="https://cdn.freecodecamp.org/curriculum/project-euler/coloured-configurations-2.png" style="display: inline-block; background-color: white; padding: 10px;">, where the units are glued along the vertical edges as in the graph <img class="img-responsive" alt="graph with four units glued along the vertical edges" src="https://cdn.freecodecamp.org/curriculum/project-euler/coloured-configurations-3.png" style="display: inline-block; background-color: white; padding: 10px;">.
 | 
						|
 | 
						|
A configuration of type $(a,b,c)$ is a graph thus built of $a$ units A and $b$ units B, where the graph's vertices are coloured using up to $c$ colours, so that no two adjacent vertices have the same colour. The compound graph above is an example of a configuration of type $(2,2,6)$, in fact of type $(2,2,c)$ for all $c ≥ 4$
 | 
						|
 | 
						|
Let $N(a,b,c)$ be the number of configurations of type $(a,b,c)$. For example, $N(1,0,3) = 24$, $N(0,2,4) = 92928$ and $N(2,2,3) = 20736$.
 | 
						|
 | 
						|
Find the last 8 digits of $N(25,75,1984)$.
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`coloredConfigurations()` should return `61190912`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(coloredConfigurations(), 61190912);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
function coloredConfigurations() {
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
coloredConfigurations();
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
// solution required
 | 
						|
```
 |