* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			67 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 5900f52e1000cf542c510041
 | 
						|
title: 'Problem 450: Hypocycloid and Lattice points'
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 302123
 | 
						|
dashedName: problem-450-hypocycloid-and-lattice-points
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
A hypocycloid is the curve drawn by a point on a small circle rolling inside a larger circle. The parametric equations of a hypocycloid centered at the origin, and starting at the right most point is given by:
 | 
						|
 | 
						|
$$x(t) = (R - r) \cos(t) + r \cos(\frac{R - r}{r}t)$$
 | 
						|
 | 
						|
$$y(t) = (R - r) \sin(t) - r \sin(\frac{R - r}{r} t)$$
 | 
						|
 | 
						|
Where $R$ is the radius of the large circle and $r$ the radius of the small circle.
 | 
						|
 | 
						|
Let $C(R, r)$ be the set of distinct points with integer coordinates on the hypocycloid with radius $R$ and $r$ and for which there is a corresponding value of $t$ such that $\sin(t)$ and $\cos(t)$ are rational numbers.
 | 
						|
 | 
						|
Let $S(R, r) = \sum\_{(x,y) \in C(R, r)} |x| + |y|$ be the sum of the absolute values of the $x$ and $y$ coordinates of the points in $C(R, r)$.
 | 
						|
 | 
						|
Let $T(N) = \sum_{R = 3}^N \sum_{r=1}^{\left\lfloor \frac{R - 1}{2} \right\rfloor} S(R, r)$ be the sum of $S(R, r)$ for $R$ and $r$ positive integers, $R\leq N$ and $2r < R$.
 | 
						|
 | 
						|
You are given:
 | 
						|
 | 
						|
$$\begin{align}
 | 
						|
  C(3, 1) = & \\{(3, 0), (-1, 2), (-1,0), (-1,-2)\\} \\\\
 | 
						|
  C(2500, 1000) = & \\{(2500, 0), (772, 2376), (772, -2376), (516, 1792), (516, -1792), (500, 0), (68, 504), \\\\
 | 
						|
                  &(68, -504),(-1356, 1088), (-1356, -1088), (-1500, 1000), (-1500, -1000)\\}
 | 
						|
\end{align}$$
 | 
						|
 | 
						|
**Note:** (-625, 0) is not an element of $C(2500, 1000)$ because $\sin(t)$ is not a rational number for the corresponding values of t.
 | 
						|
 | 
						|
$S(3, 1) = (|3| + |0|) + (|-1| + |2|) + (|-1| + |0|) + (|-1| + |-2|) = 10$
 | 
						|
 | 
						|
$T(3) = 10$; $T(10) = 524$; $T(100) = 580\\,442$; $T({10}^3) = 583\\,108\\,600$.
 | 
						|
 | 
						|
Find $T({10}^6)$.
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`hypocycloidAndLatticePoints()` should return `583333163984220900`.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(hypocycloidAndLatticePoints(), 583333163984220900);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
function hypocycloidAndLatticePoints() {
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
hypocycloidAndLatticePoints();
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
// solution required
 | 
						|
```
 |