* fix: rework challenge to use argument in function * fix: add solution * fix: correct variable name
		
			
				
	
	
		
			99 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 5900f3a51000cf542c50feb8
 | 
						|
title: 'Problem 57: Square root convergents'
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 302168
 | 
						|
dashedName: problem-57-square-root-convergents
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
It is possible to show that the square root of two can be expressed as an infinite continued fraction.
 | 
						|
 | 
						|
<div style='text-align: center;'>$\sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac 1 {2+ \dots}}}$</div>
 | 
						|
 | 
						|
By expanding this for the first four iterations, we get:
 | 
						|
 | 
						|
$1 + \\frac 1 2 = \\frac 32 = 1.5$
 | 
						|
 | 
						|
$1 + \\frac 1 {2 + \\frac 1 2} = \\frac 7 5 = 1.4$
 | 
						|
 | 
						|
$1 + \\frac 1 {2 + \\frac 1 {2+\\frac 1 2}} = \\frac {17}{12} = 1.41666 \\dots$
 | 
						|
 | 
						|
$1 + \\frac 1 {2 + \\frac 1 {2+\\frac 1 {2+\\frac 1 2}}} = \\frac {41}{29} = 1.41379 \\dots$
 | 
						|
 | 
						|
The next three expansions are $\\frac {99}{70}$, $\\frac {239}{169}$, and $\\frac {577}{408}$, but the eighth expansion, $\\frac {1393}{985}$, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
 | 
						|
 | 
						|
In the first `n` expansions, how many fractions contain a numerator with more digits than denominator?
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`squareRootConvergents(10)` should return a number.
 | 
						|
 | 
						|
```js
 | 
						|
assert(typeof squareRootConvergents(10) === 'number');
 | 
						|
```
 | 
						|
 | 
						|
`squareRootConvergents(10)` should return 1.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(squareRootConvergents(10), 1);
 | 
						|
```
 | 
						|
 | 
						|
`squareRootConvergents(100)` should return 15.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(squareRootConvergents(100), 15);
 | 
						|
```
 | 
						|
 | 
						|
`squareRootConvergents(1000)` should return 153.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(squareRootConvergents(1000), 153);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
function squareRootConvergents(n) {
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
squareRootConvergents(1000);
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
function squareRootConvergents(n) {
 | 
						|
  function countDigits(number) {
 | 
						|
    let counter = 0;
 | 
						|
    while (number > 0) {
 | 
						|
      counter++;
 | 
						|
      number = number / 10n;
 | 
						|
    }
 | 
						|
    return counter;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use BigInt as integer won't handle all cases
 | 
						|
  let numerator = 3n;
 | 
						|
  let denominator = 2n;
 | 
						|
  let moreDigitsInNumerator = 0;
 | 
						|
 | 
						|
  for (let i = 2; i <= n; i++) {
 | 
						|
    [numerator, denominator] = [
 | 
						|
      numerator + 2n * denominator,
 | 
						|
      denominator + numerator
 | 
						|
    ];
 | 
						|
 | 
						|
    if (countDigits(numerator) > countDigits(denominator)) {
 | 
						|
      moreDigitsInNumerator++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return moreDigitsInNumerator;
 | 
						|
}
 | 
						|
```
 |