* fix(curriculum): tests quotes * fix(curriculum): fill seed-teardown * fix(curriculum): fix tests and remove unneeded seed-teardown
		
			
				
	
	
		
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Zhang-Suen thinning algorithm
 | |
| id: 594810f028c0303b75339ad7
 | |
| challengeType: 5
 | |
| ---
 | |
| 
 | |
| ## Description
 | |
| <section id='description'>
 | |
| This is an algorithm used to thin a black and white i.e. one bit per pixel images.
 | |
| For example, with an input image of:
 | |
| <pre>
 | |
|  #################                   #############
 | |
|  ##################               ################
 | |
|  ###################            ##################
 | |
|  ########     #######          ###################
 | |
|    ######     #######         #######       ######
 | |
|    ######     #######        #######
 | |
|    #################         #######
 | |
|    ################          #######
 | |
|    #################         #######
 | |
|    ######     #######        #######
 | |
|    ######     #######        #######
 | |
|    ######     #######         #######       ######
 | |
|  ########     #######          ###################
 | |
|  ########     ####### ######    ################## ######
 | |
|  ########     ####### ######      ################ ######
 | |
|  ########     ####### ######         ############# ######
 | |
|                                                            </pre>
 | |
| It produces the thinned output:
 | |
| <pre>
 | |
| 
 | |
|     # ##########                       #######
 | |
|      ##        #                   ####       #
 | |
|      #          #                 ##
 | |
|      #          #                #
 | |
|      #          #                #
 | |
|      #          #                #
 | |
|      ############               #
 | |
|      #          #               #
 | |
|      #          #                #
 | |
|      #          #                #
 | |
|      #          #                #
 | |
|      #                            ##
 | |
|      #                             ############
 | |
|                        ###                          ###
 | |
| 
 | |
|                                                            </pre>
 | |
| <h2>Algorithm</h2>
 | |
| Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.
 | |
| The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:
 | |
| <table border="1">
 | |
|   <tr><td>P9</td><td>P2</td><td>P3</td></tr>
 | |
|   <tr><td>P8</td><td><b>P1</b></td><td>P4</td></tr>
 | |
|   <tr><td>P7</td><td>P6</td><td>P5</td></tr>
 | |
| </table>
 | |
| Obviously the boundary pixels of the image cannot have the full eight neighbours.
 | |
| 
 | |
|     Define $A(P1)$ = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
 | |
| 
 | |
| 
 | |
|     Define $B(P1)$ = the number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
 | |
| 
 | |
| <h3>Step 1:</h3>
 | |
| All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
 | |
|   (0) The pixel is black and has eight neighbours
 | |
|   (1) $2 <= B(P1) <= 6$
 | |
|   (2) $A(P1) = 1$
 | |
|   (3) At least one of P2 and P4 and P6 is white
 | |
|   (4) At least one of P4 and P6 and P8 is white
 | |
| After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
 | |
| <h3>Step 2:</h3>
 | |
| All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
 | |
|   (0) The pixel is black and has eight neighbours
 | |
|   (1) $2 <= B(P1) <= 6$
 | |
|   (2) $A(P1) = 1$
 | |
|   (3) At least one of P2 and P4 and '''P8''' is white
 | |
|   (4) At least one of '''P2''' and P6 and P8 is white
 | |
| After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
 | |
| Iteration:
 | |
| If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
 | |
| <p>
 | |
| Task:
 | |
| Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
 | |
| </p>
 | |
| </section>
 | |
| 
 | |
| ## Instructions
 | |
| <section id='instructions'>
 | |
| 
 | |
| </section>
 | |
| 
 | |
| ## Tests
 | |
| <section id='tests'>
 | |
| 
 | |
| ```yml
 | |
| tests:
 | |
|   - text: <code>thinImage</code> must be a function
 | |
|     testString: assert.equal(typeof thinImage, 'function', '<code>thinImage</code> must be a function');
 | |
|   - text: <code>thinImage</code> must return an array
 | |
|     testString: assert(Array.isArray(result), '<code>thinImage</code> must return an array');
 | |
|   - text: <code>thinImage</code> must return an array of strings
 | |
|     testString: assert.equal(typeof result[0], 'string', '<code>thinImage</code> must return an array of strings');
 | |
|   - text: <code>thinImage</code> must return an array of strings
 | |
|     testString: assert.deepEqual(result, expected, '<code>thinImage</code> must return an array of strings');
 | |
| 
 | |
| ```
 | |
| 
 | |
| </section>
 | |
| 
 | |
| ## Challenge Seed
 | |
| <section id='challengeSeed'>
 | |
| 
 | |
| <div id='js-seed'>
 | |
| 
 | |
| ```js
 | |
| const testImage = [
 | |
|   '                                                          ',
 | |
|   ' #################                   #############        ',
 | |
|   ' ##################               ################        ',
 | |
|   ' ###################            ##################        ',
 | |
|   ' ########     #######          ###################        ',
 | |
|   '   ######     #######         #######       ######        ',
 | |
|   '   ######     #######        #######                      ',
 | |
|   '   #################         #######                      ',
 | |
|   '   ################          #######                      ',
 | |
|   '   #################         #######                      ',
 | |
|   '   ######     #######        #######                      ',
 | |
|   '   ######     #######        #######                      ',
 | |
|   '   ######     #######         #######       ######        ',
 | |
|   ' ########     #######          ###################        ',
 | |
|   ' ########     ####### ######    ################## ###### ',
 | |
|   ' ########     ####### ######      ################ ###### ',
 | |
|   ' ########     ####### ######         ############# ###### ',
 | |
|   '                                                          '];
 | |
| 
 | |
| function thinImage(image) {
 | |
|   // Good luck!
 | |
| }
 | |
| ```
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| ### After Test
 | |
| <div id='js-teardown'>
 | |
| 
 | |
| ```js
 | |
| const imageForTests = [
 | |
|   '                                                          ',
 | |
|   ' #################                   #############        ',
 | |
|   ' ##################               ################        ',
 | |
|   ' ###################            ##################        ',
 | |
|   ' ########     #######          ###################        ',
 | |
|   '   ######     #######         #######       ######        ',
 | |
|   '   ######     #######        #######                      ',
 | |
|   '   #################         #######                      ',
 | |
|   '   ################          #######                      ',
 | |
|   '   #################         #######                      ',
 | |
|   '   ######     #######        #######                      ',
 | |
|   '   ######     #######        #######                      ',
 | |
|   '   ######     #######         #######       ######        ',
 | |
|   ' ########     #######          ###################        ',
 | |
|   ' ########     ####### ######    ################## ###### ',
 | |
|   ' ########     ####### ######      ################ ###### ',
 | |
|   ' ########     ####### ######         ############# ###### ',
 | |
|   '                                                          '];
 | |
| const expected = [
 | |
|   '                                                          ',
 | |
|   '                                                          ',
 | |
|   '    # ##########                       #######            ',
 | |
|   '     ##        #                   ####       #           ',
 | |
|   '     #          #                 ##                      ',
 | |
|   '     #          #                #                        ',
 | |
|   '     #          #                #                        ',
 | |
|   '     #          #                #                        ',
 | |
|   '     ############               #                         ',
 | |
|   '     #          #               #                         ',
 | |
|   '     #          #                #                        ',
 | |
|   '     #          #                #                        ',
 | |
|   '     #          #                #                        ',
 | |
|   '     #                            ##                      ',
 | |
|   '     #                             ############           ',
 | |
|   '                       ###                          ###   ',
 | |
|   '                                                          ',
 | |
|   '                                                          '
 | |
| ];
 | |
| const result = thinImage(imageForTests);
 | |
| ```
 | |
| 
 | |
| </div>
 | |
| 
 | |
| </section>
 | |
| 
 | |
| ## Solution
 | |
| <section id='solution'>
 | |
| 
 | |
| 
 | |
| ```js
 | |
| function Point(x, y) {
 | |
|   this.x = x;
 | |
|   this.y = y;
 | |
| }
 | |
| 
 | |
| const ZhangSuen = (function () {
 | |
|   function ZhangSuen() {
 | |
|   }
 | |
| 
 | |
|   ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
 | |
| 
 | |
|   ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
 | |
| 
 | |
|   ZhangSuen.toWhite = [];
 | |
| 
 | |
|   ZhangSuen.main = function (image) {
 | |
|     ZhangSuen.grid = new Array(image);
 | |
|     for (let r = 0; r < image.length; r++) {
 | |
|       ZhangSuen.grid[r] = image[r].split('');
 | |
|     }
 | |
|     ZhangSuen.thinImage();
 | |
|     return ZhangSuen.getResult();
 | |
|   };
 | |
| 
 | |
|   ZhangSuen.thinImage = function () {
 | |
|     let firstStep = false;
 | |
|     let hasChanged;
 | |
|     do {
 | |
|       hasChanged = false;
 | |
|       firstStep = !firstStep;
 | |
|       for (let r = 1; r < ZhangSuen.grid.length - 1; r++) {
 | |
|         for (let c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
 | |
|           if (ZhangSuen.grid[r][c] !== '#') {
 | |
|             continue;
 | |
|           }
 | |
|           const nn = ZhangSuen.numNeighbors(r, c);
 | |
|           if (nn < 2 || nn > 6) {
 | |
|             continue;
 | |
|           }
 | |
|           if (ZhangSuen.numTransitions(r, c) !== 1) {
 | |
|             continue;
 | |
|           }
 | |
|           if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1)) {
 | |
|             continue;
 | |
|           }
 | |
|           ZhangSuen.toWhite.push(new Point(c, r));
 | |
|           hasChanged = true;
 | |
|         }
 | |
|       }
 | |
|       for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
 | |
|         const p = ZhangSuen.toWhite[i];
 | |
|         ZhangSuen.grid[p.y][p.x] = ' ';
 | |
|       }
 | |
|       ZhangSuen.toWhite = [];
 | |
|     } while ((firstStep || hasChanged));
 | |
|   };
 | |
| 
 | |
|   ZhangSuen.numNeighbors = function (r, c) {
 | |
|     let count = 0;
 | |
|     for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
 | |
|       if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#') {
 | |
|         count++;
 | |
|       }
 | |
|     }
 | |
|     return count;
 | |
|   };
 | |
| 
 | |
|   ZhangSuen.numTransitions = function (r, c) {
 | |
|     let count = 0;
 | |
|     for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
 | |
|       if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
 | |
|         if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#') {
 | |
|           count++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return count;
 | |
|   };
 | |
| 
 | |
|   ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
 | |
|     let count = 0;
 | |
|     const group = ZhangSuen.nbrGroups[step];
 | |
|     for (let i = 0; i < 2; i++) {
 | |
|       for (let j = 0; j < group[i].length; j++) {
 | |
|         const nbr = ZhangSuen.nbrs[group[i][j]];
 | |
|         if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
 | |
|           count++;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return count > 1;
 | |
|   };
 | |
| 
 | |
|   ZhangSuen.getResult = function () {
 | |
|     const result = [];
 | |
|     for (let i = 0; i < ZhangSuen.grid.length; i++) {
 | |
|       const row = ZhangSuen.grid[i].join('');
 | |
|       result.push(row);
 | |
|     }
 | |
|     return result;
 | |
|   };
 | |
|   return ZhangSuen;
 | |
| }());
 | |
| 
 | |
| function thinImage(image) {
 | |
|   return ZhangSuen.main(image);
 | |
| }
 | |
| 
 | |
| ```
 | |
| 
 | |
| </section>
 |