53 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Backtracking Algorithms
 | ||
| localeTitle: 回溯算法
 | ||
| ---
 | ||
| # 回溯算法
 | ||
| 
 | ||
| 回溯是一种通用算法,用于查找某些计算问题的所有(或某些)解决方案,特别是约束满足问题,逐步构建候选解决方案,并在确定候选不能时立即放弃每个部分候选_(“回溯”)_可能完成一个有效的解决方案。
 | ||
| 
 | ||
| ### 示例问题(骑士游览问题)
 | ||
| 
 | ||
| _骑士被放置在空板的第一块上,按照国际象棋的规则移动,必须完全访问每个方块一次。_
 | ||
| 
 | ||
| ###路径跟随Knight覆盖所有细胞 以下是8 x 8单元的棋盘。单元格中的数字表示骑士的移动数量。 [](https://commons.wikimedia.org/wiki/File:Knights_tour_(Euler).png)
 | ||
| 
 | ||
| ### 骑士之旅的天真算法
 | ||
| 
 | ||
| 朴素算法是逐个生成所有游览并检查生成的游览是否满足约束。
 | ||
| ```
 | ||
| while there are untried tours 
 | ||
|  { 
 | ||
|    generate the next tour 
 | ||
|    if this tour covers all squares 
 | ||
|    { 
 | ||
|       print this path; 
 | ||
|    } 
 | ||
|  } 
 | ||
| ```
 | ||
| 
 | ||
| ### 骑士巡回赛的回溯算法
 | ||
| 
 | ||
| 以下是奈特巡回赛问题的回溯算法。
 | ||
| ```
 | ||
| If all squares are visited 
 | ||
|     print the solution 
 | ||
|  Else 
 | ||
|    a) Add one of the next moves to solution vector and recursively 
 | ||
|    check if this move leads to a solution. (A Knight can make maximum 
 | ||
|    eight moves. We choose one of the 8 moves in this step). 
 | ||
|    b) If the move chosen in the above step doesn't lead to a solution 
 | ||
|    then remove this move from the solution vector and try other 
 | ||
|    alternative moves. 
 | ||
|    c) If none of the alternatives work then return false (Returning false 
 | ||
|    will remove the previously added item in recursion and if false is 
 | ||
|    returned by the initial call of recursion then "no solution exists" ) 
 | ||
| ```
 | ||
| 
 | ||
| ### 更多信息
 | ||
| 
 | ||
| [维基百科](https://en.wikipedia.org/wiki/Backtracking)
 | ||
| 
 | ||
| [极客4极客](http://www.geeksforgeeks.org/backtracking-set-1-the-knights-tour-problem/)
 | ||
| 
 | ||
| [一个非常有趣的回溯介绍](https://www.hackerearth.com/practice/basic-programming/recursion/recursion-and-backtracking/tutorial/) |