67 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Linear Regression
 | ||
| localeTitle: Линейная регрессия
 | ||
| ---
 | ||
| ## Линейная регрессия
 | ||
| 
 | ||
| Линейная регрессия помогает нам прогнозировать оценку переменной X из оценок по другим переменным Y. Когда переменные Y нанесены на график, линейная регрессия находит наиболее подходящую прямую линию через точки. Лучшая линия называется регрессионной линией.
 | ||
| 
 | ||
| [Онлайн-симулятор линейной регрессии](https://www.mladdict.com/linear-regression-simulator)
 | ||
| 
 | ||
| В Python:
 | ||
| 
 | ||
| ```py
 | ||
| #Price of wheat/kg and the average price of bread 
 | ||
|  wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]] 
 | ||
|  
 | ||
|  def step_gradient(b_current, m_current, points, learningRate): 
 | ||
|     b_gradient = 0 
 | ||
|     m_gradient = 0 
 | ||
|     N = float(len(points)) 
 | ||
|     for i in range(0, len(points)): 
 | ||
|         x = points[i][0] 
 | ||
|         y = points[i][1] 
 | ||
|         b_gradient += -(2/N) * (y - ((m_current * x) + b_current)) 
 | ||
|         m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current)) 
 | ||
|     new_b = b_current - (learningRate * b_gradient) 
 | ||
|     new_m = m_current - (learningRate * m_gradient) 
 | ||
|     return [new_b, new_m] 
 | ||
|  
 | ||
|  def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations): 
 | ||
|     b = starting_b 
 | ||
|     m = starting_m 
 | ||
|     for i in range(num_iterations): 
 | ||
|         b, m = step_gradient(b, m, points, learning_rate) 
 | ||
|     return [b, m] 
 | ||
|  
 | ||
|  gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100) 
 | ||
| ```
 | ||
| 
 | ||
| Пример кода из [этой статьи](http://blog.floydhub.com/coding-the-history-of-deep-learning/) . Это также объясняет градиентный спуск и другие важные понятия для глубокого обучения.
 | ||
| 
 | ||
| Важно отметить, что не вся линейная регрессия выполняется с градиентным спуском. Нормальное уравнение можно также использовать для нахождения коэффициентов линейной регрессии, однако это использует умножение матриц и поэтому может потребовать много времени для использования более чем для 100 000 или 100 000 экземпляров.
 | ||
| 
 | ||
| В Python: Применяйте непосредственно, используя библиотеку scikit, делая линейную регрессию простой в использовании даже на больших наборах данных.
 | ||
| 
 | ||
| ```py
 | ||
| import pandas as pd 
 | ||
|  from sklearn.cross_validation import train_test_split 
 | ||
|  from sklearn.linear_model import LinearRegression as lr 
 | ||
|  train = pd.read_csv('../input/train.csv') 
 | ||
|  test = pd.read_csv('../input/test.csv') 
 | ||
|  X = train.iloc[:, 0:4].values 
 | ||
|  y = train.iloc[:, 4].values 
 | ||
|  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 
 | ||
|  X_train 
 | ||
|  model = lr() 
 | ||
|  model.fit(X_train, y_train) 
 | ||
|  print(model.score(X_train,y_train)) 
 | ||
|  y_pred_class = model.predict(X_test) 
 | ||
|  model.score(X_train,y_train) 
 | ||
|  print(model.coef_) 
 | ||
|  print(model.intercept_) 
 | ||
|  # calculate accuracy 
 | ||
|  from sklearn import metrics 
 | ||
|  print(metrics.accuracy_score(y_test, y_pred_class)) 
 | ||
| 
 | ||
| ``` |