80 lines
1.4 KiB
Markdown
80 lines
1.4 KiB
Markdown
---
|
||
id: 5900f4931000cf542c50ffa6
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
title: 问题295:透镜孔
|
||
---
|
||
|
||
## Description
|
||
<section id="description">
|
||
如果满足以下条件,我们称两个圆包围的凸面为透镜孔:
|
||
两个圆的中心都在晶格点上。
|
||
两个圆在两个不同的晶格点处相交。
|
||
被两个圆包围的凸区域的内部不包含任何晶格点。
|
||
|
||
考虑一下圈子:
|
||
C0:x2 + y2 = 25
|
||
C1:(x + 4)2+(y-4)2 = 1
|
||
C2:(x-12)2+(y-4)2 = 65
|
||
|
||
|
||
下图绘制了圆圈C0,C1和C2。
|
||
|
||
|
||
C0和C1以及C0和C2形成一个透镜孔。
|
||
|
||
如果存在两个半径为r1和r2且形成一个透镜孔的圆,我们将一个有序正实数对(r1,r2)称为透镜对。
|
||
我们可以验证(1,5)和(5,√65)是以上示例的双凸透镜对。
|
||
|
||
令L(N)为0 <r1≤r2≤N的不同双凸透镜对(r1,r2)的数量。
|
||
我们可以验证L(10)= 30和L(100)= 3442。
|
||
|
||
求L(100 000)。
|
||
</section>
|
||
|
||
## Instructions
|
||
<section id="instructions">
|
||
</section>
|
||
|
||
## Tests
|
||
<section id='tests'>
|
||
|
||
```yml
|
||
tests:
|
||
- text: <code>euler295()</code>应该返回4884650818。
|
||
testString: assert.strictEqual(euler295(), 4884650818);
|
||
|
||
```
|
||
|
||
</section>
|
||
|
||
## Challenge Seed
|
||
<section id='challengeSeed'>
|
||
|
||
<div id='js-seed'>
|
||
|
||
```js
|
||
function euler295() {
|
||
// Good luck!
|
||
return true;
|
||
}
|
||
|
||
euler295();
|
||
|
||
```
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</section>
|
||
|
||
## Solution
|
||
<section id='solution'>
|
||
|
||
```js
|
||
// solution required
|
||
```
|
||
|
||
/section>
|