* fix: Chinese test suite Add localeTiltes, descriptions, and adjust test text and testStrings to get the automated test suite working. * fix: ran script, updated testStrings and solutions
2.1 KiB
id, challengeType, title, videoUrl, localeTitle
id | challengeType | title | videoUrl | localeTitle |
---|---|---|---|---|
5900f5171000cf542c510029 | 5 | Problem 426: Box-ball system | 问题426:箱式球系统 |
Description
A turn consists of moving each ball exactly once according to the following rule: Transfer the leftmost ball which has not been moved to the nearest empty box to its right.
After one turn the sequence (2, 2, 2, 1, 2) becomes (2, 2, 1, 2, 3) as can be seen below; note that we begin the new sequence starting at the first occupied box.
A system like this is called a Box-Ball System or BBS for short.
It can be shown that after a sufficient number of turns, the system evolves to a state where the consecutive numbers of occupied boxes is invariant. In the example below, the consecutive numbers of occupied boxes evolves to [1, 2, 3]; we shall call this the final state.
We define the sequence {ti}:s0 = 290797 sk+1 = sk2 mod 50515093 tk = (sk mod 64) + 1
Starting from the initial configuration (t0, t1, …, t10), the final state becomes [1, 3, 10, 24, 51, 75]. Starting from the initial configuration (t0, t1, …, t10 000 000), find the final state. Give as your answer the sum of the squares of the elements of the final state. For example, if the final state is [1, 2, 3] then 14 ( = 12 + 22 + 32) is your answer.
Instructions
Tests
tests:
- text: <code>euler426()</code>应该返回31591886008。
testString: assert.strictEqual(euler426(), 31591886008);
Challenge Seed
function euler426() {
// Good luck!
return true;
}
euler426();
Solution
// solution required