Files
freeCodeCamp/curriculum/challenges/english/08-coding-interview-prep/data-structures/use-breadth-first-search-in-a-binary-search-tree.english.md
Randell Dawson c25fa49b5b fix(curriculum): changed test text to use should for Coding Interview Prep - part 1 of 2 (#37765)
* fix: changed test text to use should

* fix: corrected typo

Co-Authored-By: Tom <20648924+moT01@users.noreply.github.com>

* fix: corrected typo

Co-Authored-By: Tom <20648924+moT01@users.noreply.github.com>

* fix: corrected typo

Co-Authored-By: Tom <20648924+moT01@users.noreply.github.com>

* fix: use singular of verb

Co-Authored-By: Tom <20648924+moT01@users.noreply.github.com>

* fix: changed punctuation

Co-Authored-By: Tom <20648924+moT01@users.noreply.github.com>

* fix: reworded test text

Co-Authored-By: Tom <20648924+moT01@users.noreply.github.com>
2019-11-19 20:13:45 -05:00

5.3 KiB

id, title, challengeType, forumTopicId
id title challengeType forumTopicId
587d8258367417b2b2512c7f Use Breadth First Search in a Binary Search Tree 1 301718

Description

Here we will introduce another tree traversal method: breadth-first search. In contrast to the depth-first search methods from the last challenge, breadth-first search explores all the nodes in a given level within a tree before continuing on to the next level. Typically, queues are utilized as helper data structures in the design of breadth-first search algorithms. In this method, we start by adding the root node to a queue. Then we begin a loop where we dequeue the first item in the queue, add it to a new array, and then inspect both its child subtrees. If its children are not null, they are each enqueued. This process continues until the queue is empty.

Instructions

Let's create a breadth-first search method in our tree called levelOrder. This method should return an array containing the values of all the tree nodes, explored in a breadth-first manner. Be sure to return the values in the array, not the nodes themselves. A level should be traversed from left to right. Next, let's write a similar method called reverseLevelOrder which performs the same search but in the reverse direction (right to left) at each level.

Tests

tests:
  - text: The <code>BinarySearchTree</code> data structure should exist.
    testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() }; return (typeof test == 'object')})());
  - text: The binary search tree should have a method called <code>levelOrder</code>.
    testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; return (typeof test.levelOrder == 'function')})());
  - text: The binary search tree should have a method called <code>reverseLevelOrder</code>.
    testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; return (typeof test.reverseLevelOrder == 'function')})());
  - text: The <code>levelOrder</code> method should return an array of the tree node values explored in level order.
    testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; if (typeof test.levelOrder !== 'function') { return false; }; test.add(7); test.add(1); test.add(9); test.add(0); test.add(3); test.add(8); test.add(10); test.add(2); test.add(5); test.add(4); test.add(6); return (test.levelOrder().join('') == '719038102546'); })());
  - text: The <code>reverseLevelOrder</code> method should return an array of the tree node values explored in reverse level order.
    testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; if (typeof test.reverseLevelOrder !== 'function') { return false; }; test.add(7); test.add(1); test.add(9); test.add(0); test.add(3); test.add(8); test.add(10); test.add(2); test.add(5); test.add(4); test.add(6); return (test.reverseLevelOrder().join('') == '791108305264'); })());
  - text: The <code>levelOrder</code> method should return <code>null</code> for an empty tree.
    testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; if (typeof test.levelOrder !== 'function') { return false; }; return (test.levelOrder() == null); })());
  - text: The <code>reverseLevelOrder</code> method should return <code>null</code> for an empty tree.
    testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; if (typeof test.reverseLevelOrder !== 'function') { return false; }; return (test.reverseLevelOrder() == null); })());

Challenge Seed

var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
  this.value = value;
  this.left = null;
  this.right = null;
}
function BinarySearchTree() {
  this.root = null;
  // change code below this line
  // change code above this line
}

After Test

BinarySearchTree.prototype = {
  add: function(value) {
    var node = this.root;
    if (node == null) {
      this.root = new Node(value);
      return;
    } else {
      function searchTree(node) {
        if (value < node.value) {
          if (node.left == null) {
            node.left = new Node(value);
            return;
          } else if (node.left != null) {
            return searchTree(node.left);
          }
        } else if (value > node.value) {
          if (node.right == null) {
            node.right = new Node(value);
            return;
          } else if (node.right != null) {
            return searchTree(node.right);
          }
        } else {
          return null;
        }
      }
      return searchTree(node);
    }
  }
};

Solution

// solution required