Files
freeCodeCamp/curriculum/challenges/japanese/10-coding-interview-prep/project-euler/problem-74-digit-factorial-chains.md
2022-01-20 20:30:18 +01:00

124 lines
3.1 KiB
Markdown

---
id: 5900f3b61000cf542c50fec9
title: '問題 74: 各位の階乗の連鎖'
challengeType: 5
forumTopicId: 302187
dashedName: problem-74-digit-factorial-chains
---
# --description--
145 という数は、各位の階乗の和も 145 に等しいことがよく知られています。
$$1! + 4! + 5! = 1 + 24 + 120 = 145$$
169 にはあまり知られていない性質があります。169 は、その数自体に戻るまでの数の連鎖が最長です。このようなループは次の 3 つしか存在しません。
$$\begin{align} &169 → 363601 → 1454 → 169\\\\ &871 → 45361 → 871\\\\ &872 → 45362 → 872\\\\ \end{align}$$
どの数から始めても最終的にはループに入るということを証明するのは難しくありません。 下に例を挙げます。
$$\begin{align} &69 → 363600 → 1454 → 169 → 363601\\ (→ 1454)\\\\ &78 → 45360 → 871 → 45361\\ (→ 871)\\\\ &540 → 145\\ (→ 145)\\\\ \end{align}$$
69 から始めると 5 つの非反復項を持つ連鎖になりますが、100 万より小さい数から始めると、最長の非反復連鎖は 60 項です。
`n` 未満の数から始めた場合、ちょうど 60 項の非反復項を持つ連鎖はいくつありますか。
# --hints--
`digitFactorialChains(2000)` は数値を返す必要があります。
```js
assert(typeof digitFactorialChains(2000) === 'number');
```
`digitFactorialChains(2000)``6` を返す必要があります。
```js
assert.strictEqual(digitFactorialChains(2000), 6);
```
`digitFactorialChains(100000)``42` を返す必要があります。
```js
assert.strictEqual(digitFactorialChains(100000), 42);
```
`digitFactorialChains(500000)``282` を返す必要があります。
```js
assert.strictEqual(digitFactorialChains(500000), 282);
```
`digitFactorialChains(1000000)``402` を返す必要があります。
```js
assert.strictEqual(digitFactorialChains(1000000), 402);
```
# --seed--
## --seed-contents--
```js
function digitFactorialChains(n) {
return true;
}
digitFactorialChains(2000);
```
# --solutions--
```js
function digitFactorialChains(n) {
function sumDigitsFactorials(number) {
let sum = 0;
while (number > 0) {
sum += factorials[number % 10];
number = Math.floor(number / 10);
}
return sum;
}
const factorials = [1];
for (let i = 1; i < 10; i++) {
factorials.push(factorials[factorials.length - 1] * i);
}
const sequences = {
169: 3,
871: 2,
872: 2,
1454: 3,
45362: 2,
45461: 2,
3693601: 3
};
let result = 0;
for (let i = 2; i < n; i++) {
let curNum = i;
let chainLength = 0;
const curSequence = [];
while (curSequence.indexOf(curNum) === -1) {
curSequence.push(curNum);
curNum = sumDigitsFactorials(curNum);
chainLength++;
if (sequences.hasOwnProperty(curNum) > 0) {
chainLength += sequences[curNum];
break;
}
}
if (chainLength === 60) {
result++;
}
for (let j = 1; j < curSequence.length; j++) {
sequences[curSequence[j]] = chainLength - j;
}
}
return result;
}
```