124 lines
3.1 KiB
Markdown
124 lines
3.1 KiB
Markdown
---
|
|
id: 5900f3b61000cf542c50fec9
|
|
title: '問題 74: 各位の階乗の連鎖'
|
|
challengeType: 5
|
|
forumTopicId: 302187
|
|
dashedName: problem-74-digit-factorial-chains
|
|
---
|
|
|
|
# --description--
|
|
|
|
145 という数は、各位の階乗の和も 145 に等しいことがよく知られています。
|
|
|
|
$$1! + 4! + 5! = 1 + 24 + 120 = 145$$
|
|
|
|
169 にはあまり知られていない性質があります。169 は、その数自体に戻るまでの数の連鎖が最長です。このようなループは次の 3 つしか存在しません。
|
|
|
|
$$\begin{align} &169 → 363601 → 1454 → 169\\\\ &871 → 45361 → 871\\\\ &872 → 45362 → 872\\\\ \end{align}$$
|
|
|
|
どの数から始めても最終的にはループに入るということを証明するのは難しくありません。 下に例を挙げます。
|
|
|
|
$$\begin{align} &69 → 363600 → 1454 → 169 → 363601\\ (→ 1454)\\\\ &78 → 45360 → 871 → 45361\\ (→ 871)\\\\ &540 → 145\\ (→ 145)\\\\ \end{align}$$
|
|
|
|
69 から始めると 5 つの非反復項を持つ連鎖になりますが、100 万より小さい数から始めると、最長の非反復連鎖は 60 項です。
|
|
|
|
`n` 未満の数から始めた場合、ちょうど 60 項の非反復項を持つ連鎖はいくつありますか。
|
|
|
|
# --hints--
|
|
|
|
`digitFactorialChains(2000)` は数値を返す必要があります。
|
|
|
|
```js
|
|
assert(typeof digitFactorialChains(2000) === 'number');
|
|
```
|
|
|
|
`digitFactorialChains(2000)` は `6` を返す必要があります。
|
|
|
|
```js
|
|
assert.strictEqual(digitFactorialChains(2000), 6);
|
|
```
|
|
|
|
`digitFactorialChains(100000)` は `42` を返す必要があります。
|
|
|
|
```js
|
|
assert.strictEqual(digitFactorialChains(100000), 42);
|
|
```
|
|
|
|
`digitFactorialChains(500000)` は `282` を返す必要があります。
|
|
|
|
```js
|
|
assert.strictEqual(digitFactorialChains(500000), 282);
|
|
```
|
|
|
|
`digitFactorialChains(1000000)` は `402` を返す必要があります。
|
|
|
|
```js
|
|
assert.strictEqual(digitFactorialChains(1000000), 402);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function digitFactorialChains(n) {
|
|
|
|
return true;
|
|
}
|
|
|
|
digitFactorialChains(2000);
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
function digitFactorialChains(n) {
|
|
function sumDigitsFactorials(number) {
|
|
let sum = 0;
|
|
while (number > 0) {
|
|
sum += factorials[number % 10];
|
|
number = Math.floor(number / 10);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
const factorials = [1];
|
|
for (let i = 1; i < 10; i++) {
|
|
factorials.push(factorials[factorials.length - 1] * i);
|
|
}
|
|
|
|
const sequences = {
|
|
169: 3,
|
|
871: 2,
|
|
872: 2,
|
|
1454: 3,
|
|
45362: 2,
|
|
45461: 2,
|
|
3693601: 3
|
|
};
|
|
let result = 0;
|
|
|
|
for (let i = 2; i < n; i++) {
|
|
let curNum = i;
|
|
let chainLength = 0;
|
|
const curSequence = [];
|
|
while (curSequence.indexOf(curNum) === -1) {
|
|
curSequence.push(curNum);
|
|
curNum = sumDigitsFactorials(curNum);
|
|
chainLength++;
|
|
if (sequences.hasOwnProperty(curNum) > 0) {
|
|
chainLength += sequences[curNum];
|
|
break;
|
|
}
|
|
}
|
|
if (chainLength === 60) {
|
|
result++;
|
|
}
|
|
for (let j = 1; j < curSequence.length; j++) {
|
|
sequences[curSequence[j]] = chainLength - j;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
```
|