11 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName | 
|---|---|---|---|---|
| 594810f028c0303b75339ad7 | Zhang-Suen thinning algorithm | 5 | 302347 | zhang-suen-thinning-algorithm | 
--description--
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of:
################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ######
It produces the thinned output:
    # ##########                       #######
     ##        #                   ####       #
     #          #                 ##
     #          #                #
     #          #                #
     #          #                #
     ############               #
     #          #               #
     #          #                #
     #          #                #
     #          #                #
     #                            ##
     #                             ############
                       ###                          ###
Algorithm
Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:
| P9 | P2 | P3 | 
| P8 | P1 | P4 | 
| P7 | P6 | P5 | 
Obviously the boundary pixels of the image cannot have the full eight neighbours.
- Define $A(P1)$ = the number of transitions from white to black, (0 -> 1) in the sequence P2, P3, P4, P5, P6, P7, P8, P9, P2. (Note the extra P2 at the end - it is circular).
- Define $B(P1)$ = the number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
Step 1:
All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.
- The pixel is black and has eight neighbours
- $2 <= B(P1) <= 6$
- $A(P1) = 1$
- At least one of P2, P4 and P6 is white
- At least one of P4, P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.
Step 2:
All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.
- The pixel is black and has eight neighbours
- $2 <= B(P1) <= 6$
- $A(P1) = 1$
- At least one of P2, P4 and P8 is white
- At least one of P2, P6 and P8 is white
After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.
Iteration:
If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.
--instructions--
Write a routine to perform Zhang-Suen thinning on the provided image matrix.
--hints--
thinImage should be a function.
assert.equal(typeof thinImage, 'function');
thinImage should return an array.
assert(Array.isArray(result));
thinImage should return an array of strings.
assert.equal(typeof result[0], 'string');
thinImage should return an array of strings.
assert.deepEqual(result, expected);
--seed--
--after-user-code--
const imageForTests = [
  '                                                          ',
  ' #################                   #############        ',
  ' ##################               ################        ',
  ' ###################            ##################        ',
  ' ########     #######          ###################        ',
  '   ######     #######         #######       ######        ',
  '   ######     #######        #######                      ',
  '   #################         #######                      ',
  '   ################          #######                      ',
  '   #################         #######                      ',
  '   ######     #######        #######                      ',
  '   ######     #######        #######                      ',
  '   ######     #######         #######       ######        ',
  ' ########     #######          ###################        ',
  ' ########     ####### ######    ################## ###### ',
  ' ########     ####### ######      ################ ###### ',
  ' ########     ####### ######         ############# ###### ',
  '                                                          '];
const expected = [
  '                                                          ',
  '                                                          ',
  '    # ##########                       #######            ',
  '     ##        #                   ####       #           ',
  '     #          #                 ##                      ',
  '     #          #                #                        ',
  '     #          #                #                        ',
  '     #          #                #                        ',
  '     ############               #                         ',
  '     #          #               #                         ',
  '     #          #                #                        ',
  '     #          #                #                        ',
  '     #          #                #                        ',
  '     #                            ##                      ',
  '     #                             ############           ',
  '                       ###                          ###   ',
  '                                                          ',
  '                                                          '
];
const result = thinImage(imageForTests);
--seed-contents--
const testImage = [
  '                                                          ',
  ' #################                   #############        ',
  ' ##################               ################        ',
  ' ###################            ##################        ',
  ' ########     #######          ###################        ',
  '   ######     #######         #######       ######        ',
  '   ######     #######        #######                      ',
  '   #################         #######                      ',
  '   ################          #######                      ',
  '   #################         #######                      ',
  '   ######     #######        #######                      ',
  '   ######     #######        #######                      ',
  '   ######     #######         #######       ######        ',
  ' ########     #######          ###################        ',
  ' ########     ####### ######    ################## ###### ',
  ' ########     ####### ######      ################ ###### ',
  ' ########     ####### ######         ############# ###### ',
  '                                                          '];
function thinImage(image) {
}
--solutions--
function Point(x, y) {
  this.x = x;
  this.y = y;
}
const ZhangSuen = (function () {
  function ZhangSuen() {
  }
  ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
  ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
  ZhangSuen.toWhite = [];
  ZhangSuen.main = function (image) {
    ZhangSuen.grid = new Array(image);
    for (let r = 0; r < image.length; r++) {
      ZhangSuen.grid[r] = image[r].split('');
    }
    ZhangSuen.thinImage();
    return ZhangSuen.getResult();
  };
  ZhangSuen.thinImage = function () {
    let firstStep = false;
    let hasChanged;
    do {
      hasChanged = false;
      firstStep = !firstStep;
      for (let r = 1; r < ZhangSuen.grid.length - 1; r++) {
        for (let c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
          if (ZhangSuen.grid[r][c] !== '#') {
            continue;
          }
          const nn = ZhangSuen.numNeighbors(r, c);
          if (nn < 2 || nn > 6) {
            continue;
          }
          if (ZhangSuen.numTransitions(r, c) !== 1) {
            continue;
          }
          if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1)) {
            continue;
          }
          ZhangSuen.toWhite.push(new Point(c, r));
          hasChanged = true;
        }
      }
      for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
        const p = ZhangSuen.toWhite[i];
        ZhangSuen.grid[p.y][p.x] = ' ';
      }
      ZhangSuen.toWhite = [];
    } while ((firstStep || hasChanged));
  };
  ZhangSuen.numNeighbors = function (r, c) {
    let count = 0;
    for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
      if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#') {
        count++;
      }
    }
    return count;
  };
  ZhangSuen.numTransitions = function (r, c) {
    let count = 0;
    for (let i = 0; i < ZhangSuen.nbrs.length - 1; i++) {
      if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
        if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#') {
          count++;
        }
      }
    }
    return count;
  };
  ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
    let count = 0;
    const group = ZhangSuen.nbrGroups[step];
    for (let i = 0; i < 2; i++) {
      for (let j = 0; j < group[i].length; j++) {
        const nbr = ZhangSuen.nbrs[group[i][j]];
        if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
          count++;
          break;
        }
      }
    }
    return count > 1;
  };
  ZhangSuen.getResult = function () {
    const result = [];
    for (let i = 0; i < ZhangSuen.grid.length; i++) {
      const row = ZhangSuen.grid[i].join('');
      result.push(row);
    }
    return result;
  };
  return ZhangSuen;
}());
function thinImage(image) {
  return ZhangSuen.main(image);
}