Valeriy 79d9012432 fix(curriculum): quotes in tests (#18828)
* fix(curriculum): tests quotes

* fix(curriculum): fill seed-teardown

* fix(curriculum): fix tests and remove unneeded seed-teardown
2018-10-20 23:32:47 +05:30

1.3 KiB

id, challengeType, title
id challengeType title
5900f46e1000cf542c50ff80 5 Problem 257: Angular Bisectors

Description

Given is an integer sided triangle ABC with sides a ≤ b ≤ c. (AB = c, BC = a and AC = b). The angular bisectors of the triangle intersect the sides at points E, F and G (see picture below).

The segments EF, EG and FG partition the triangle ABC into four smaller triangles: AEG, BFE, CGF and EFG. It can be proven that for each of these four triangles the ratio area(ABC)/area(subtriangle) is rational. However, there exist triangles for which some or all of these ratios are integral.

How many triangles ABC with perimeter≤100,000,000 exist so that the ratio area(ABC)/area(AEG) is integral?

Instructions

Tests

tests:
  - text: <code>euler257()</code> should return 139012411.
    testString: assert.strictEqual(euler257(), 139012411, '<code>euler257()</code> should return 139012411.');

Challenge Seed

function euler257() {
  // Good luck!
  return true;
}

euler257();

Solution

// solution required