* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
45 lines
783 B
Markdown
45 lines
783 B
Markdown
---
|
|
id: 5900f52a1000cf542c51003c
|
|
title: 'Problem 445: Retractions A'
|
|
challengeType: 5
|
|
forumTopicId: 302117
|
|
dashedName: problem-445-retractions-a
|
|
---
|
|
|
|
# --description--
|
|
|
|
For every integer n>1, the family of functions fn,a,b is defined
|
|
|
|
by fn,a,b(x)≡ax+b mod n for a,b,x integer and 0
|
|
|
|
You are given that ∑ R(c) for c=C(100 000,k), and 1 ≤ k ≤99 999 ≡628701600 (mod 1 000 000 007). (C(n,k) is the binomial coefficient).
|
|
|
|
Find ∑ R(c) for c=C(10 000 000,k), and 1 ≤k≤ 9 999 999. Give your answer modulo 1 000 000 007.
|
|
|
|
# --hints--
|
|
|
|
`euler445()` should return 659104042.
|
|
|
|
```js
|
|
assert.strictEqual(euler445(), 659104042);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function euler445() {
|
|
|
|
return true;
|
|
}
|
|
|
|
euler445();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|