* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
981 B
981 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4421000cf542c50ff55 | Problem 214: Totient Chains | 5 | 301856 | problem-214-totient-chains |
--description--
Let φ be Euler's totient function, i.e. for a natural number n,
φ(n) is the number of k, 1 ≤ k ≤ n, for which gcd(k,n) = 1.
By iterating φ, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4:
5,4,2,1 7,6,2,1 8,4,2,1 9,6,2,1 10,4,2,1 12,4,2,1 14,6,2,1 18,6,2,1
Only two of these chains start with a prime, their sum is 12.
What is the sum of all primes less than 40000000 which generate a chain of length 25?
--hints--
euler214()
should return 1677366278943.
assert.strictEqual(euler214(), 1677366278943);
--seed--
--seed-contents--
function euler214() {
return true;
}
euler214();
--solutions--
// solution required