* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
49 lines
1.0 KiB
Markdown
49 lines
1.0 KiB
Markdown
---
|
|
id: 5900f4a31000cf542c50ffb6
|
|
title: 'Problem 311: Biclinic Integral Quadrilaterals'
|
|
challengeType: 5
|
|
forumTopicId: 301967
|
|
dashedName: problem-311-biclinic-integral-quadrilaterals
|
|
---
|
|
|
|
# --description--
|
|
|
|
ABCD is a convex, integer sided quadrilateral with 1 ≤ AB < BC < CD < AD.
|
|
|
|
BD has integer length. O is the midpoint of BD. AO has integer length.
|
|
|
|
We'll call ABCD a biclinic integral quadrilateral if AO = CO ≤ BO = DO.
|
|
|
|
For example, the following quadrilateral is a biclinic integral quadrilateral: AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.
|
|
|
|
Let B(N) be the number of distinct biclinic integral quadrilaterals ABCD that satisfy AB2+BC2+CD2+AD2 ≤ N. We can verify that B(10 000) = 49 and B(1 000 000) = 38239.
|
|
|
|
Find B(10 000 000 000).
|
|
|
|
# --hints--
|
|
|
|
`euler311()` should return 2466018557.
|
|
|
|
```js
|
|
assert.strictEqual(euler311(), 2466018557);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function euler311() {
|
|
|
|
return true;
|
|
}
|
|
|
|
euler311();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|