Files
freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-143-investigating-the-torricelli-point-of-a-triangle.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

41 lines
1.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f3fc1000cf542c50ff0e
title: 问题143研究三角形的Torricelli点
challengeType: 5
videoUrl: ''
dashedName: problem-143-investigating-the-torricelli-point-of-a-triangle
---
# --description--
设ABC为三角形所有内角均小于120度。设X为三角形内的任意点并使XA = pXC = qXB = r。 Fermat挑战Torricelli找到X的位置使p + q + r最小化。 Torricelli能够证明如果在三角形ABC的每一侧构造等边三角形AOBBNC和AMC则AOBBNC和AMC的外接圆将在三角形内的单个点T处相交。此外他证明了T称为Torricelli / Fermat点最小化p + q + r。更值得注意的是可以证明当总和最小化时AN = BM = CO = p + q + r并且ANBM和CO也在T处相交。
如果总和最小化并且abcpq和r都是正整数我们将称三角形ABC为Torricelli三角形。例如a = 399b = 455c = 511是Torricelli三角形的示例其中p + q + r = 784.找到Torricelli三角形的p + q +r≤120000的所有不同值的总和。
# --hints--
`euler143()`应返回30758397。
```js
assert.strictEqual(euler143(), 30758397);
```
# --seed--
## --seed-contents--
```js
function euler143() {
return true;
}
euler143();
```
# --solutions--
```js
// solution required
```