* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
45 lines
780 B
Markdown
45 lines
780 B
Markdown
---
|
||
id: 5900f5201000cf542c510032
|
||
title: 问题435:斐波那契数的多项式
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-435-polynomials-of-fibonacci-numbers
|
||
---
|
||
|
||
# --description--
|
||
|
||
斐波纳契数{fn,n≥0}被递归定义为fn = fn-1 + fn-2,基本情况为f0 = 0和f1 = 1。
|
||
|
||
对于0≤i≤n,将多项式{Fn,n≥0}定义为Fn(x)= ∑fixi。
|
||
|
||
例如,F7(x)= x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7,而F7(11)= 268357683。
|
||
|
||
令n =1015。求和\[∑0≤x≤100 Fn(x)] mod 1307674368000(= 15!)。
|
||
|
||
# --hints--
|
||
|
||
`euler435()`252541322550。
|
||
|
||
```js
|
||
assert.strictEqual(euler435(), 252541322550);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler435() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler435();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|