Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

962 B
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3e81000cf542c50fefb Problem 124: Ordered radicals 5 301751 problem-124-ordered-radicals

--description--

The radical of n, rad(n), is the product of the distinct prime factors of n. For example, 504 = 23 × 32 × 7, so rad(504) = 2 × 3 × 7 = 42.

If we calculate rad(n) for 1 ≤ n ≤ 10, then sort them on rad(n), and sorting on n if the radical values are equal, we get:

Unsorted

Sorted n rad(n)

n rad(n) k 11

111 22

222 33

423 42

824 55

335 66

936 77

557 82

668 93

779 1010

101010 Let E(k) be the kth element in the sorted n column; for example, E(4) = 8 and E(6) = 9. If rad(n) is sorted for 1 ≤ n ≤ 100000, find E(10000).

--hints--

euler124() should return 21417.

assert.strictEqual(euler124(), 21417);

--seed--

--seed-contents--

function euler124() {

  return true;
}

euler124();

--solutions--

// solution required