Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

996 B
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3ec1000cf542c50fefe Problem 127: abc-hits 5 301754 problem-127-abc-hits

--description--

The radical of n, rad(n), is the product of distinct prime factors of n. For example, 504 = 23 × 32 × 7, so rad(504) = 2 × 3 × 7 = 42.

We shall define the triplet of positive integers (a, b, c) to be an abc-hit if:

GCD(a, b) = GCD(a, c) = GCD(b, c) = 1

a < b

a + b = c

rad(abc) < c

For example, (5, 27, 32) is an abc-hit, because:

GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1

5 < 27

5 + 27 = 32

rad(4320) = 30 < 32

It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for c < 1000, with ∑c = 12523.

Find ∑c for c < 120000.

--hints--

euler127() should return 18407904.

assert.strictEqual(euler127(), 18407904);

--seed--

--seed-contents--

function euler127() {

  return true;
}

euler127();

--solutions--

// solution required