Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.3 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3ec1000cf542c50feff Problem 128: Hexagonal tile differences 5 301755 problem-128-hexagonal-tile-differences

--description--

A hexagonal tile with number 1 is surrounded by a ring of six hexagonal tiles, starting at "12 o'clock" and numbering the tiles 2 to 7 in an anti-clockwise direction.

New rings are added in the same fashion, with the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram below shows the first three rings.

By finding the difference between tile n and each of its six neighbours we shall define PD(n) to be the number of those differences which are prime. For example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and 13. So PD(8) = 3. In the same way, the differences around tile 17 are 1, 17, 16, 1, 11, and 10, hence PD(17) = 2. It can be shown that the maximum value of PD(n) is 3. If all of the tiles for which PD(n) = 3 are listed in ascending order to form a sequence, the 10th tile would be 271. Find the 2000th tile in this sequence.

--hints--

euler128() should return 14516824220.

assert.strictEqual(euler128(), 14516824220);

--seed--

--seed-contents--

function euler128() {

  return true;
}

euler128();

--solutions--

// solution required