* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f3f51000cf542c50ff08 | Problem 137: Fibonacci golden nuggets | 5 | 301765 | problem-137-fibonacci-golden-nuggets |
--description--
Consider the infinite polynomial series AF(x) = xF1 + x2F2 + x3F3 + ..., where Fk is the kth term in the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ... ; that is, Fk = Fk−1 + Fk−2, F1 = 1 and F2 = 1.
For this problem we shall be interested in values of x for which AF(x) is a positive integer.
Surprisingly AF(1/2)
=
(1/2).1 + (1/2)2.1 + (1/2)3.2 + (1/2)4.3 + (1/2)5.5 + ...
= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...
= 2 The corresponding values of x for the first five natural numbers are shown below.
xAF(x) √2−11 1/22 (√13−2)/33 (√89−5)/84 (√34−3)/55
We shall call AF(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690. Find the 15th golden nugget.
--hints--
euler137()
should return 1120149658760.
assert.strictEqual(euler137(), 1120149658760);
--seed--
--seed-contents--
function euler137() {
return true;
}
euler137();
--solutions--
// solution required