* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f41a1000cf542c50ff2d | Problem 174: Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements | 5 | 301809 | problem-174-counting-the-number-of-hollow-square-laminae-that-can-form-one-two-three-----distinct-arrangements |
--description--
We shall define a square lamina to be a square outline with a square "hole" so that the shape possesses vertical and horizontal symmetry.
Given eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1 hole in the middle. However, using thirty-two tiles it is possible to form two distinct laminae.
If t represents the number of tiles used, we shall say that t = 8 is type L(1) and t = 32 is type L(2). Let N(n) be the number of t ≤ 1000000 such that t is type L(n); for example, N(15) = 832. What is ∑ N(n) for 1 ≤ n ≤ 10?
--hints--
euler174()
should return 209566.
assert.strictEqual(euler174(), 209566);
--seed--
--seed-contents--
function euler174() {
return true;
}
euler174();
--solutions--
// solution required