Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

817 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f48d1000cf542c50ff9f Problem 288: An enormous factorial 5 301939 problem-288-an-enormous-factorial

--description--

For any prime p the number N(p,q) is defined by

N(p,q) = ∑n=0 to q Tn*pn with Tn generated by the following random number generator:

S0 = 290797 Sn+1 = Sn2 mod 50515093 Tn = Sn mod p

Let Nfac(p,q) be the factorial of N(p,q). Let NF(p,q) be the number of factors p in Nfac(p,q).

You are given that NF(3,10000) mod 320=624955285.

Find NF(61,107) mod 6110

--hints--

euler288() should return 605857431263982000.

assert.strictEqual(euler288(), 605857431263982000);

--seed--

--seed-contents--

function euler288() {

  return true;
}

euler288();

--solutions--

// solution required