* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f49b1000cf542c50ffad | Problem 302: Strong Achilles Numbers | 5 | 301956 | problem-302-strong-achilles-numbers |
--description--
A positive integer n is powerful if p2 is a divisor of n for every prime factor p in n.
A positive integer n is a perfect power if n can be expressed as a power of another positive integer.
A positive integer n is an Achilles number if n is powerful but not a perfect power. For example, 864 and 1800 are Achilles numbers: 864 = 25·33 and 1800 = 23·32·52.
We shall call a positive integer S a Strong Achilles number if both S and φ(S) are Achilles numbers.1 For example, 864 is a Strong Achilles number: φ(864) = 288 = 25·32. However, 1800 isn't a Strong Achilles number because: φ(1800) = 480 = 25·31·51.
There are 7 Strong Achilles numbers below 104 and 656 below 108.
How many Strong Achilles numbers are there below 1018?
1 φ denotes Euler's totient function.
--hints--
euler302()
should return 1170060.
assert.strictEqual(euler302(), 1170060);
--seed--
--seed-contents--
function euler302() {
return true;
}
euler302();
--solutions--
// solution required