Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.5 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f49f1000cf542c50ffb1 Problem 306: Paper-strip Game 5 301960 problem-306-paper-strip-game

--description--

The following game is a classic example of Combinatorial Game Theory:

Two players start with a strip of n white squares and they take alternate turns. On each turn, a player picks two contiguous white squares and paints them black. The first player who cannot make a move loses.

If n = 1, there are no valid moves, so the first player loses automatically. If n = 2, there is only one valid move, after which the second player loses. If n = 3, there are two valid moves, but both leave a situation where the second player loses. If n = 4, there are three valid moves for the first player; she can win the game by painting the two middle squares. If n = 5, there are four valid moves for the first player (shown below in red); but no matter what she does, the second player (blue) wins.

So, for 1 ≤ n ≤ 5, there are 3 values of n for which the first player can force a win. Similarly, for 1 ≤ n ≤ 50, there are 40 values of n for which the first player can force a win.

For 1 ≤ n ≤ 1 000 000, how many values of n are there for which the first player can force a win?

--hints--

euler306() should return 852938.

assert.strictEqual(euler306(), 852938);

--seed--

--seed-contents--

function euler306() {

  return true;
}

euler306();

--solutions--

// solution required