freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-311-biclinic-integral-quadrilaterals.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.0 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4a31000cf542c50ffb6 Problem 311: Biclinic Integral Quadrilaterals 5 301967 problem-311-biclinic-integral-quadrilaterals

--description--

ABCD is a convex, integer sided quadrilateral with 1 ≤ AB < BC < CD < AD.

BD has integer length. O is the midpoint of BD. AO has integer length.

We'll call ABCD a biclinic integral quadrilateral if AO = CO ≤ BO = DO.

For example, the following quadrilateral is a biclinic integral quadrilateral: AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.

Let B(N) be the number of distinct biclinic integral quadrilaterals ABCD that satisfy AB2+BC2+CD2+AD2 ≤ N. We can verify that B(10 000) = 49 and B(1 000 000) = 38239.

Find B(10 000 000 000).

--hints--

euler311() should return 2466018557.

assert.strictEqual(euler311(), 2466018557);

--seed--

--seed-contents--

function euler311() {

  return true;
}

euler311();

--solutions--

// solution required