* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.4 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4ab1000cf542c50ffbd | Problem 318: 2011 nines | 5 | 301974 | problem-318-2011-nines |
--description--
Consider the real number √2+√3.
When we calculate the even powers of √2+√3
we get:
(√2+√3)2 = 9.898979485566356...
(√2+√3)4 = 97.98979485566356...
(√2+√3)6 = 969.998969071069263...
(√2+√3)8 = 9601.99989585502907...
(√2+√3)10 = 95049.999989479221...
(√2+√3)12 = 940897.9999989371855...
(√2+√3)14 = 9313929.99999989263...
(√2+√3)16 = 92198401.99999998915...
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of (√2+√3)2n approaches 1 for large n.
Consider all real numbers of the form √p+√q with p and q positive integers and p<q, such that the fractional part of (√p+√q)2n approaches 1 for large n.
Let C(p,q,n) be the number of consecutive nines at the beginning of the fractional part of (√p+√q)2n.
Let N(p,q) be the minimal value of n such that C(p,q,n) ≥ 2011.
Find ∑N(p,q) for p+q ≤ 2011.
--hints--
euler318()
should return 709313889.
assert.strictEqual(euler318(), 709313889);
--seed--
--seed-contents--
function euler318() {
return true;
}
euler318();
--solutions--
// solution required