Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

796 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4f91000cf542c51000c Problem 397: Triangle on parabola 5 302062 problem-397-triangle-on-parabola

--description--

On the parabola y = x2/k, three points A(a, a2/k), B(b, b2/k) and C(c, c2/k) are chosen.

Let F(K, X) be the number of the integer quadruplets (k, a, b, c) such that at least one angle of the triangle ABC is 45-degree, with 1 ≤ k ≤ K and -X ≤ a < b < c ≤ X.

For example, F(1, 10) = 41 and F(10, 100) = 12492. Find F(106, 109).

--hints--

euler397() should return 141630459461893730.

assert.strictEqual(euler397(), 141630459461893730);

--seed--

--seed-contents--

function euler397() {

  return true;
}

euler397();

--solutions--

// solution required