Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese ()
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

873 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f51d1000cf542c51002f Problem 433: Steps in Euclid's algorithm 5 302104 problem-433-steps-in-euclids-algorithm

--description--

Let E(x0, y0) be the number of steps it takes to determine the greatest common divisor of x0 and y0 with Euclid's algorithm. More formally:x1 = y0, y1 = x0 mod y0xn = yn-1, yn = xn-1 mod yn-1

E(x0, y0) is the smallest n such that yn = 0.

We have E(1,1) = 1, E(10,6) = 3 and E(6,10) = 4.

Define S(N) as the sum of E(x,y) for 1 ≤ x,y ≤ N. We have S(1) = 1, S(10) = 221 and S(100) = 39826.

Find S(5·106).

--hints--

euler433() should return 326624372659664.

assert.strictEqual(euler433(), 326624372659664);

--seed--

--seed-contents--

function euler433() {

  return true;
}

euler433();

--solutions--

// solution required