freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-435-polynomials-of-fibonacci-numbers.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

821 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f5201000cf542c510032 Problem 435: Polynomials of Fibonacci numbers 5 302106 problem-435-polynomials-of-fibonacci-numbers

--description--

The Fibonacci numbers {fn, n ≥ 0} are defined recursively as fn = fn-1 + fn-2 with base cases f0 = 0 and f1 = 1.

Define the polynomials {Fn, n ≥ 0} as Fn(x) = ∑fixi for 0 ≤ i ≤ n.

For example, F7(x) = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7, and F7(11) = 268357683.

Let n = 1015. Find the sum [∑0≤x≤100 Fn(x)] mod 1307674368000 (= 15!).

--hints--

euler435() should return 252541322550.

assert.strictEqual(euler435(), 252541322550);

--seed--

--seed-contents--

function euler435() {

  return true;
}

euler435();

--solutions--

// solution required