* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.4 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f5411000cf542c510052 | Problem 467: Superinteger | 5 | 302142 | problem-467-superinteger |
--description--
An integer s is called a superinteger of another integer n if the digits of n form a subsequence of the digits of s.
For example, 2718281828 is a superinteger of 18828, while 314159 is not a superinteger of 151.
Let p(n) be the nth prime number, and let c(n) be the nth composite number. For example, p(1) = 2, p(10) = 29, c(1) = 4 and c(10) = 18. {p(i) : i ≥ 1} = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...} {c(i) : i ≥ 1} = {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ...}
Let PD the sequence of the digital roots of {p(i)} (CD is defined similarly for {c(i)}): PD = {2, 3, 5, 7, 2, 4, 8, 1, 5, 2, ...} CD = {4, 6, 8, 9, 1, 3, 5, 6, 7, 9, ...}
Let Pn be the integer formed by concatenating the first n elements of PD (Cn is defined similarly for CD). P10 = 2357248152 C10 = 4689135679
Let f(n) be the smallest positive integer that is a common superinteger of Pn and Cn. For example, f(10) = 2357246891352679, and f(100) mod 1 000 000 007 = 771661825.
Find f(10 000) mod 1 000 000 007.
--hints--
euler467()
should return 775181359.
assert.strictEqual(euler467(), 775181359);
--seed--
--seed-contents--
function euler467() {
return true;
}
euler467();
--solutions--
// solution required