freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-468-smooth-divisors-of-binomial-coefficients.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

899 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f5411000cf542c510054 Problem 468: Smooth divisors of binomial coefficients 5 302143 problem-468-smooth-divisors-of-binomial-coefficients

--description--

An integer is called B-smooth if none of its prime factors is greater than B.

Let SB(n) be the largest B-smooth divisor of n. Examples: S1(10) = 1 S4(2100) = 12 S17(2496144) = 5712

Define F(n) = ∑1≤B≤n ∑0≤r≤n SB(C(n,r)). Here, C(n,r) denotes the binomial coefficient. Examples: F(11) = 3132 F(1 111) mod 1 000 000 993 = 706036312 F(111 111) mod 1 000 000 993 = 22156169

Find F(11 111 111) mod 1 000 000 993.

--hints--

euler468() should return 852950321.

assert.strictEqual(euler468(), 852950321);

--seed--

--seed-contents--

function euler468() {

  return true;
}

euler468();

--solutions--

// solution required