Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

828 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f5471000cf542c510059 Problem 474: Last digits of divisors 5 302151 problem-474-last-digits-of-divisors

--description--

For a positive integer n and digits d, we define F(n, d) as the number of the divisors of n whose last digits equal d.

For example, F(84, 4) = 3. Among the divisors of 84 (1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84), three of them (4, 14, 84) have the last digit 4.

We can also verify that F(12!, 12) = 11 and F(50!, 123) = 17888.

Find F(106!, 65432) modulo (1016 + 61).

--hints--

euler474() should return 9690646731515010.

assert.strictEqual(euler474(), 9690646731515010);

--seed--

--seed-contents--

function euler474() {

  return true;
}

euler474();

--solutions--

// solution required