* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f3b21000cf542c50fec5 | Problem 70: Totient permutation | 5 | 302183 | problem-70-totient-permutation |
--description--
Euler's Totient function, φ(n
) [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n
which are relatively prime to n
. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6. The number 1 is considered to be relatively prime to every positive number, so φ(1)=1.
Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation of 79180.
Find the value of n
, 1 < n
< 107, for which φ(n
) is a permutation of n
and the ratio n
/φ(n
) produces a minimum.
--hints--
totientPermutation()
should return a number.
assert(typeof totientPermutation() === 'number');
totientPermutation()
should return 8319823.
assert.strictEqual(totientPermutation(), 8319823);
--seed--
--seed-contents--
function totientPermutation() {
return true;
}
totientPermutation();
--solutions--
// solution required