* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			49 lines
		
	
	
		
			837 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			837 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f53e1000cf542c510051
 | ||
| title: 'Problem 466: Distinct terms in a multiplication table'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 302141
 | ||
| dashedName: problem-466-distinct-terms-in-a-multiplication-table
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Let P(m,n) be the number of distinct terms in an m×n multiplication table.
 | ||
| 
 | ||
| For example, a 3×4 multiplication table looks like this:
 | ||
| 
 | ||
| × 12341 12342 24683 36912
 | ||
| 
 | ||
| There are 8 distinct terms {1,2,3,4,6,8,9,12}, therefore P(3,4) = 8.
 | ||
| 
 | ||
| You are given that: P(64,64) = 1263, P(12,345) = 1998, and P(32,1015) = 13826382602124302.
 | ||
| 
 | ||
| Find P(64,1016).
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `euler466()` should return 258381958195474750.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(euler466(), 258381958195474750);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function euler466() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler466();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |