* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			65 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f3ae1000cf542c50fec1
 | 
						||
title: 'Problem 66: Diophantine equation'
 | 
						||
challengeType: 5
 | 
						||
forumTopicId: 302178
 | 
						||
dashedName: problem-66-diophantine-equation
 | 
						||
---
 | 
						||
 | 
						||
# --description--
 | 
						||
 | 
						||
Consider quadratic Diophantine equations of the form:
 | 
						||
 | 
						||
<div style='text-align: center;'>x<sup>2</sup> – Dy<sup>2</sup> = 1</div>
 | 
						||
 | 
						||
For example, when D=13, the minimal solution in x is 649<sup>2</sup> – 13×180<sup>2</sup> = 1.
 | 
						||
 | 
						||
It can be assumed that there are no solutions in positive integers when D is square.
 | 
						||
 | 
						||
By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the following:
 | 
						||
 | 
						||
<div style='margin-left: 2em;'>
 | 
						||
  3<sup>2</sup> – 2×2<sup>2</sup> = 1<br>
 | 
						||
  2<sup>2</sup> – 3×1<sup>2</sup> = 1<br>
 | 
						||
  <strong><span style='color: red;'>9</span></strong><sup>2</sup> – 5×4<sup>2</sup> = 1<br>
 | 
						||
  5<sup>2</sup> – 6×2<sup>2</sup> = 1<br>
 | 
						||
  8<sup>2</sup> – 7×3<sup>2</sup> = 1<br>
 | 
						||
</div>
 | 
						||
 | 
						||
Hence, by considering minimal solutions in `x` for D ≤ 7, the largest `x` is obtained when D=5.
 | 
						||
 | 
						||
Find the value of D ≤ 1000 in minimal solutions of `x` for which the largest value of `x` is obtained.
 | 
						||
 | 
						||
# --hints--
 | 
						||
 | 
						||
`diophantineEquation()` should return a number.
 | 
						||
 | 
						||
```js
 | 
						||
assert(typeof diophantineEquation() === 'number');
 | 
						||
```
 | 
						||
 | 
						||
`diophantineEquation()` should return 661.
 | 
						||
 | 
						||
```js
 | 
						||
assert.strictEqual(diophantineEquation(), 661);
 | 
						||
```
 | 
						||
 | 
						||
# --seed--
 | 
						||
 | 
						||
## --seed-contents--
 | 
						||
 | 
						||
```js
 | 
						||
function diophantineEquation() {
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
diophantineEquation();
 | 
						||
```
 | 
						||
 | 
						||
# --solutions--
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 |