mrugesh 22afc2a0ca feat(learn): python certification projects (#38216)
Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
2020-05-27 13:19:08 +05:30

1.0 KiB

id, challengeType, isHidden, title, forumTopicId
id challengeType isHidden title forumTopicId
5900f47e1000cf542c50ff90 5 false Problem 273: Sum of Squares 301923

Description

Consider equations of the form: a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer.

For N=65 there are two solutions: a=1, b=8 and a=4, b=7. We call S(N) the sum of the values of a of all solutions of a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer. Thus S(65) = 1 + 4 = 5. Find ∑S(N), for all squarefree N only divisible by primes of the form 4k+1 with 4k+1 < 150.

Instructions

Tests

tests:
  - text: <code>euler273()</code> should return 2032447591196869000.
    testString: assert.strictEqual(euler273(), 2032447591196869000);

Challenge Seed

function euler273() {
  // Good luck!
  return true;
}

euler273();

Solution

// solution required