Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
1.8 KiB
1.8 KiB
id, challengeType, isHidden, title, forumTopicId
id | challengeType | isHidden | title | forumTopicId |
---|---|---|---|---|
5900f5451000cf542c510057 | 5 | false | Problem 472: Comfortable Distance II | 302149 |
Description
Here are the possible seating arrangements for N = 15:
We see that if the first person chooses correctly, the 15 seats can seat up to 7 people. We can also see that the first person has 9 choices to maximize the number of people that may be seated.
Let f(N) be the number of choices the first person has to maximize the number of occupants for N seats in a row. Thus, f(1) = 1, f(15) = 9, f(20) = 6, and f(500) = 16.
Also, ∑f(N) = 83 for 1 ≤ N ≤ 20 and ∑f(N) = 13343 for 1 ≤ N ≤ 500.
Find ∑f(N) for 1 ≤ N ≤ 1012. Give the last 8 digits of your answer.
Instructions
Tests
tests:
- text: <code>euler472()</code> should return 73811586.
testString: assert.strictEqual(euler472(), 73811586);
Challenge Seed
function euler472() {
// Good luck!
return true;
}
euler472();
Solution
// solution required