mrugesh 22afc2a0ca feat(learn): python certification projects (#38216)
Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
2020-05-27 13:19:08 +05:30

1.4 KiB

id, challengeType, isHidden, title, forumTopicId
id challengeType isHidden title forumTopicId
5900f4751000cf542c50ff87 5 false Problem 264: Triangle Centres 301913

Description

Consider all the triangles having: All their vertices on lattice points. Circumcentre at the origin O. Orthocentre at the point H(5, 0). There are nine such triangles having a perimeter ≤ 50. Listed and shown in ascending order of their perimeter, they are:

A(-4, 3), B(5, 0), C(4, -3) A(4, 3), B(5, 0), C(-4, -3) A(-3, 4), B(5, 0), C(3, -4) A(3, 4), B(5, 0), C(-3, -4) A(0, 5), B(5, 0), C(0, -5) A(1, 8), B(8, -1), C(-4, -7) A(8, 1), B(1, -8), C(-4, 7) A(2, 9), B(9, -2), C(-6, -7) A(9, 2), B(2, -9), C(-6, 7)

The sum of their perimeters, rounded to four decimal places, is 291.0089.

Find all such triangles with a perimeter ≤ 105. Enter as your answer the sum of their perimeters rounded to four decimal places.

Instructions

Tests

tests:
  - text: <code>euler264()</code> should return 2816417.1055.
    testString: assert.strictEqual(euler264(), 2816417.1055);

Challenge Seed

function euler264() {
  // Good luck!
  return true;
}

euler264();

Solution

// solution required