mrugesh 22afc2a0ca feat(learn): python certification projects (#38216)
Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com>
Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com>
Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
2020-05-27 13:19:08 +05:30

1.6 KiB

id, challengeType, isHidden, title, forumTopicId
id challengeType isHidden title forumTopicId
5900f3b11000cf542c50fec4 5 false Problem 69: Totient maximum 302181

Description

Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.

n Relatively Prime φ(n) n/φ(n)
2 1 1 2
3 1,2 2 1.5
4 1,3 2 2
5 1,2,3,4 4 1.25
6 1,5 2 3
7 1,2,3,4,5,6 6 1.1666...
8 1,3,5,7 4 2
9 1,2,4,5,7,8 6 1.5
10 1,3,7,9 4 2.5

It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.

Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.

Instructions

Tests

tests:
  - text: <code>totientMaximum()</code> should return a number.
    testString: assert(typeof totientMaximum() === 'number');
  - text: <code>totientMaximum()</code> should return 510510.
    testString: assert.strictEqual(totientMaximum(), 510510);

Challenge Seed

function totientMaximum() {
  // Good luck!
  return true;
}

totientMaximum();

Solution

// solution required