56 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f5241000cf542c510036
 | ||
| challengeType: 5
 | ||
| title: 'Problem 437: Fibonacci primitive roots'
 | ||
| videoUrl: ''
 | ||
| localeTitle: ''
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id="description">当我们计算8n模11为n = 0到9时,我们得到:1,8,9,6,4,10,3,2,5,7。我们看到所有可能的值从1到10出现。所以8是11的原始根。但还有更多:如果我们仔细看看,我们看到:1 + 8 = 9 8 + 9 =17≡6mod11 9 + 6 =15≡4mod11 6 + 4 = 10 4 + 10 =14≡3mod11 10 + 3 =13≡2mod11 3 + 2 = 5 2 + 5 = 7 5 + 7 =12≡1mod11。 <p>因此,8 mod 11的幂是循环的,具有周期10,并且8n + 8n +1≡8n+ 2(mod 11)。 8被称为11的斐波那契原始根。不是每个素数都有斐波那契原始根。有一个或多个Fibonacci原始根有323个小于10000的素数,这些素数的总和是1480491.用至少一个Fibonacci原始根找到小于100,000,000的素数之和。 </p></section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id="instructions">
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: ''
 | ||
|     testString: 'assert.strictEqual(euler437(), 74204709657207, "<code>euler437()</code> should return 74204709657207.");'
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler437() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler437();
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| </section>
 |