* fix: clean-up Project Euler 141-160 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: use different notation for consistency * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md Co-authored-by: gikf <60067306+gikf@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			58 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4091000cf542c50ff1c
 | |
| title: 'Problem 157: Solving the diophantine equation'
 | |
| challengeType: 5
 | |
| forumTopicId: 301788
 | |
| dashedName: problem-157-solving-the-diophantine-equation
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Consider the diophantine equation $\frac{1}{a} + \frac{1}{b} = \frac{p}{{10}^n}$ with $a$, $b$, $p$, $n$ positive integers and $a ≤ b$.
 | |
| 
 | |
| For $n = 1$ this equation has 20 solutions that are listed below:
 | |
| 
 | |
| $$\begin{array}{lllll}
 | |
|   \frac{1}{1}  + \frac{1}{1}  = \frac{20}{10} & \frac{1}{1} + \frac{1}{2}  = \frac{15}{10}
 | |
| & \frac{1}{1}  + \frac{1}{5}  = \frac{12}{10} & \frac{1}{1} + \frac{1}{10} = \frac{11}{10}
 | |
| & \frac{1}{2}  + \frac{1}{2}  = \frac{10}{10} \\\\
 | |
|   \frac{1}{2}  + \frac{1}{5}  = \frac{7}{10}   & \frac{1}{2} + \frac{1}{10} = \frac{6}{10}
 | |
| & \frac{1}{3}  + \frac{1}{6}  = \frac{5}{10}   & \frac{1}{3} + \frac{1}{15} = \frac{4}{10}
 | |
| & \frac{1}{4}  + \frac{1}{4}  = \frac{5}{10} \\\\
 | |
|   \frac{1}{4}  + \frac{1}{4}  = \frac{5}{10}  & \frac{1}{5}  + \frac{1}{5}  = \frac{4}{10}
 | |
| & \frac{1}{5}  + \frac{1}{10} = \frac{3}{10}  & \frac{1}{6}  + \frac{1}{30} = \frac{2}{10}
 | |
| & \frac{1}{10} + \frac{1}{10} = \frac{2}{10} \\\\
 | |
|   \frac{1}{11} + \frac{1}{110} = \frac{1}{10} & \frac{1}{12} + \frac{1}{60}  = \frac{1}{10}
 | |
| & \frac{1}{14} + \frac{1}{35}  = \frac{1}{10} & \frac{1}{15} + \frac{1}{30}  = \frac{1}{10}
 | |
| & \frac{1}{20} + \frac{1}{20}  = \frac{1}{10}
 | |
| \end{array}$$
 | |
| 
 | |
| How many solutions has this equation for $1 ≤ n ≤ 9$?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `diophantineEquation()` should return `53490`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(diophantineEquation(), 53490);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function diophantineEquation() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| diophantineEquation();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |