* fix: clean-up Project Euler 161-180 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			50 lines
		
	
	
		
			1005 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1005 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4181000cf542c50ff2a
 | |
| title: >-
 | |
|   Problem 171: Finding numbers for which the sum of the squares of the digits is
 | |
|   a square
 | |
| challengeType: 5
 | |
| forumTopicId: 301806
 | |
| dashedName: >-
 | |
|   problem-171-finding-numbers-for-which-the-sum-of-the-squares-of-the-digits-is-a-square
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| For a positive integer $n$, let $f(n)$ be the sum of the squares of the digits (in base 10) of $n$, e.g.
 | |
| 
 | |
| $$\begin{align}
 | |
|   & f(3) = 3^2 = 9 \\\\
 | |
|   & f(25) = 2^2 + 5^2 = 4 + 25 = 29 \\\\
 | |
|   & f(442) = 4^2 + 4^2 + 2^2 = 16 + 16 + 4 = 36 \\\\
 | |
| \end{align}$$
 | |
| 
 | |
| Find the last nine digits of the sum of all $n$, $0 < n < {10}^{20}$, such that $f(n)$ is a perfect square.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `lastDigitsSumOfPerfectSquare()` should return `142989277`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(lastDigitsSumOfPerfectSquare(), 142989277);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function lastDigitsSumOfPerfectSquare() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| lastDigitsSumOfPerfectSquare();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |